首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5089篇
  免费   690篇
  国内免费   121篇
电工技术   27篇
综合类   241篇
化学工业   1851篇
金属工艺   25篇
机械仪表   197篇
建筑科学   82篇
矿业工程   5篇
能源动力   6篇
轻工业   1104篇
水利工程   24篇
石油天然气   63篇
武器工业   5篇
无线电   360篇
一般工业技术   855篇
冶金工业   35篇
原子能技术   171篇
自动化技术   849篇
  2024年   7篇
  2023年   117篇
  2022年   75篇
  2021年   382篇
  2020年   171篇
  2019年   174篇
  2018年   163篇
  2017年   194篇
  2016年   240篇
  2015年   243篇
  2014年   342篇
  2013年   366篇
  2012年   362篇
  2011年   350篇
  2010年   304篇
  2009年   334篇
  2008年   365篇
  2007年   317篇
  2006年   234篇
  2005年   235篇
  2004年   178篇
  2003年   174篇
  2002年   116篇
  2001年   94篇
  2000年   47篇
  1999年   50篇
  1998年   29篇
  1997年   19篇
  1996年   25篇
  1995年   33篇
  1994年   24篇
  1993年   22篇
  1992年   15篇
  1991年   17篇
  1990年   18篇
  1989年   13篇
  1988年   7篇
  1987年   10篇
  1986年   12篇
  1985年   9篇
  1984年   6篇
  1983年   3篇
  1982年   1篇
  1980年   3篇
排序方式: 共有5900条查询结果,搜索用时 15 毫秒
41.
《Journal of dairy science》2022,105(10):8509-8522
Telomeres cap the ends of eukaryotic chromosomes, and the telomere length (TL) is related to cellular age. The mitochondrial DNA copy number (mtDNAcn) reflects the abundance of mitochondria in a cell. In addition to generating energy, mitochondria are also the main producers of reactive oxygen species, which in turn can accelerate TL attrition and impair mitochondrial function. Nutrition in early life could influence mtDNAcn and TL in later life. In the present study, we investigated the effects of feeding different levels of milk replacer (MR) on TL shortening and energetic status by examining mtDNAcn of heifers during their first year of life. In this study, whole blood samples were obtained from German Holstein heifer calves 36 to 48 h after birth (wk 1) and at wk 12 and wk 16 of life (n = 37), as well as from 31 calves when reaching 1 yr of age. Calves were fed either a high level of MR (14% solids) at 10 L/d (1.4 kg of MR/d; n = 18) or a restrictive low level at 5.7 L/d (0.8 kg of MR/d; n = 19) until linear weaning in wk 13 to 14 of life. Additional whole blood samples were taken from their respective dams 36 to 48 h after calving. Relative TL (qT) and mtDNAcn in cells from whole blood were measured by multiplex quantitative PCR. The greatest qT values were observed in neonates (36–48 h after birth), with decreasing qT values thereafter. Delta qT values were calculated as ΔqT = qT (first year of life) ? initial qT (36–48 h after birth). We found no effect of the feeding regimen on qT values, but qT decreased with age. The mtDNAcn was lowest in neonates, increased until wk 12 of life, and then remained at a constant level until after weaning (wk 16). After the first year of life, mtDNAcn was decreased and returned to levels comparable to those of the neonatal stage. No differences in mtDNAcn were detectable between feeding groups within each time point. When comparing the values of qT and mtDNAcn between the calves and their dams after calving (36–48 h after birth and after calving), greater values were observed in calves than in dams. Delta qT values were negative in all but 2 calves (on the restricted diet), indicating that the change in TL with age was not uniform among individual animals, whereas no difference in mean ΔqT values occurred between the feeding groups. Additional analyses of the correlation between qT, mtDNAcn, and various indicators of oxidative status from birth until wk 16 of life did not indicate major interactions between oxidative status, qT and mtDNAcn. The results of this study support an age-dependent decrease of TL in calves independent of the MR feeding level and show the dynamic changes of mtDNAcn in early life.  相似文献   
42.
浸矿微生物分子生物学鉴定方法   总被引:1,自引:0,他引:1  
介绍了微生物浸矿中,浸矿微生物的鉴定非常关键,它是对浸矿微生物进行驯化、诱变、基因重组等后续操作的基本前题以及目前分子生物学方法在浸矿微生物鉴定中的应用情况。认为DNA探针分析方法具有快速、灵敏、特异性高等特点,适合混合菌群中已知菌株的快速检出,可应用于未经培养的自然菌群中菌株的鉴定;16SrRNA序列分析方法结果比较准确。  相似文献   
43.

Background

International marriage has had a rapid growth in recent years in Taiwan. However, little is known about the blood lead levels and DNA damage levels among immigrant women from resource-limited countries.

Objective

This study (a) explored differences between immigrant women and native women in demographic characteristics, blood lead levels, and DNA damage levels, and (b) identified risk factors that are associated with blood lead concentrations and DNA damage levels after immigration.

Methods

We used a structured questionnaire to collect data on socio-demographic status from (a) 71 immigrant women who had resettled in 2006 in Taichung, Taiwan and (b) 83 native women who live in the same area. Each study participant provided blood samples for lead and metal measurements, complete blood count examination, and the comet assay to measure degree of DNA damage.

Results

Immigrant women had higher mean blood lead concentration (2.23 ± 1.63 vs. 1.63 ± 1.00 μg/dl; p = 0.04) and lower mean blood zinc level (6.22 ± 2.22 vs. 6.89 ± 2.44 mg/l; p = 0.07) than native women. Resettlement time was a determinant to decrease blood lead and DNA damage levels among immigrants in Taiwan. Multiple linear regression analysis confirmed a statistically significant association between blood lead level and DNA damage, while zinc had a protective effect.

Conclusions

Public health agencies should focus on primary prevention and providing screening programs for this vulnerable population. An immigrant women's cohort should been established to follow-up and improve for elevated lead exposure families.  相似文献   
44.
Persistent organic pollutants (POPs) encompass an array of anthropogenic organic and elemental substances and their degradation and metabolic byproducts that have been found in the tissues of exposed animals, especially POPs categorized as organohalogen contaminants (OHCs). OHCs have been of concern in the circumpolar arctic for decades. For example, as a consequence of bioaccumulation and in some cases biomagnification of legacy (e.g., chlorinated PCBs, DDTs and CHLs) and emerging (e.g., brominated flame retardants (BFRs) and in particular polybrominated diphenyl ethers (PBDEs) and perfluorinated compounds (PFCs) including perfluorooctane sulfonate (PFOS) and perfluorooctanic acid (PFOA) found in Arctic biota and humans. Of high concern are the potential biological effects of these contaminants in exposed Arctic wildlife and fish. As concluded in the last review in 2004 for the Arctic Monitoring and Assessment Program (AMAP) on the effects of POPs in Arctic wildlife, prior to 1997, biological effects data were minimal and insufficient at any level of biological organization. The present review summarizes recent studies on biological effects in relation to OHC exposure, and attempts to assess known tissue/body compartment concentration data in the context of possible threshold levels of effects to evaluate the risks. This review concentrates mainly on post-2002, new OHC effects data in Arctic wildlife and fish, and is largely based on recently available effects data for populations of several top trophic level species, including seabirds (e.g., glaucous gull (Larus hyperboreus)), polar bears (Ursus maritimus), polar (Arctic) fox (Vulpes lagopus), and Arctic charr (Salvelinus alpinus), as well as semi-captive studies on sled dogs (Canis familiaris). Regardless, there remains a dearth of data on true contaminant exposure, cause-effect relationships with respect to these contaminant exposures in Arctic wildlife and fish. Indications of exposure effects are largely based on correlations between biomarker endpoints (e.g., biochemical processes related to the immune and endocrine system, pathological changes in tissues and reproduction and development) and tissue residue levels of OHCs (e.g., PCBs, DDTs, CHLs, PBDEs and in a few cases perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonates (PFSAs)). Some exceptions include semi-field studies on comparative contaminant effects of control and exposed cohorts of captive Greenland sled dogs, and performance studies mimicking environmentally relevant PCB concentrations in Arctic charr. Recent tissue concentrations in several arctic marine mammal species and populations exceed a general threshold level of concern of 1 part-per-million (ppm), but a clear evidence of a POP/OHC-related stress in these populations remains to be confirmed. There remains minimal evidence that OHCs are having widespread effects on the health of Arctic organisms, with the possible exception of East Greenland and Svalbard polar bears and Svalbard glaucous gulls. However, the true (if any real) effects of POPs in Arctic wildlife have to be put into the context of other environmental, ecological and physiological stressors (both anthropogenic and natural) that render an overall complex picture. For instance, seasonal changes in food intake and corresponding cycles of fattening and emaciation seen in Arctic animals can modify contaminant tissue distribution and toxicokinetics (contaminant deposition, metabolism and depuration). Also, other factors, including impact of climate change (seasonal ice and temperature changes, and connection to food web changes, nutrition, etc. in exposed biota), disease, species invasion and the connection to disease resistance will impact toxicant exposure. Overall, further research and better understanding of POP/OHC impact on animal performance in Arctic biota are recommended. Regardless, it could be argued that Arctic wildlife and fish at the highest potential risk of POP/OHC exposure and mediated effects are East Greenland, Svalbard and (West and South) Hudson Bay polar bears, Alaskan and Northern Norway killer whales, several species of gulls and other seabirds from the Svalbard area, Northern Norway, East Greenland, the Kara Sea and/or the Canadian central high Arctic, East Greenland ringed seal and a few populations of Arctic charr and Greenland shark.  相似文献   
45.
根据生物体长期进化所产生的“fail-safe”效应,着重讨论了占基因组98%以上的非编码DNA序列的生物学功能;分析了密码子-氨基酸矩阵、密码子-反密码子矩阵在DNA复制、转录过程中防止基因突变的摇摆(Wobble)现象;阐明了基因结构中非编码“内含子”提高转录过程的可靠性;揭示了基因组中全部非编码DNA,特别是重复序列中的“转座子”在基因组中散在插入特性,构成了基因组的骨架——基因载体,对DNA分子的结构稳定性起了关键作用,从而可以减轻,乃至“屏蔽”恶劣的细胞环境对基因的干扰和损伤.  相似文献   
46.
The effects of UV-assisted TiO2-photocatalytic oxidation (PCO) inactivation of pathogenic bacteria (Escherichia coli O157:H7, Listeria monocytogenes, Salmonella typhimurium) in a liquid culture using different domains of UV irradiation (A, B and C) were evaluated. Structural changes in super-coiled plasmid DNA (pUC19) and genomic DNA of E. coli were observed using gel electrophoresis to demonstrate the photodynamic DNA strand breaking activity of UV-assisted TiO2-PCO. Membrane damage in bacterial cells was observed using both a scanning electron microscope (SEM) and a confocal laser scanning microscope (CLSM). Both UVC-TiO2-PCO and UVC alone resulted in an earlier bactericidal phase (initial counts of approximately 6 log CFU/mL) in 60 s and 90 s, respectively, in liquid culture. UVC-TiO2-PCO treatment for 6 min converted all plasmid DNA to the linear form; however, under UVC irradiation alone, super-coiled DNA remained. Prolonged UVC-TiO2-PCO treatment resulted in structural changes in genomic DNA from E. coli. SEM observations revealed that bacteria suffered severe visible cell damage after UVC-TiO2-PCO treatment for 30–60 min. S. typhimurium cells showed visible damage after 30 min, which was confirmed using CLSM. All treated cells were stained red using propidium iodide under a fluorescent light.  相似文献   
47.
A pure culture of Microcystis aeruginosa or Anabaena variabilis, the representatives of water blooming algae, was exposed to low-pressure (LP) or medium-pressure (MP) UV lamps. Irradiated pure culture suspension was subsequently incubated for 7d under white light fluorescent lamps. During incubation, profiles of the number of cells, DNA damage and photosynthetic activity were determined. When UV fluence was 600mJ/cm(2), M. aeruginosa cell numbers decreased throughout the 7-d incubation period, to produce 1.5log reduction (LP) or 1.2log reduction (MP) compared with control. The amount of DNA damage was 2.02x10(-4) ESS/base (LP) and 3.42x10(-4) ESS/base (MP) just after UV irradiation, which became 0.05x10(-4) ESS/base and 0.23x10(-4) ESS/base, respectively, after 3d incubation. However, cell number kept decreasing, even after DNA repair. Photosynthetic activity decreased by 1.5log within 1d (LP) or 3d (MP). Thus, reduction in photosynthetic activity could contribute to the reduction in M. aeruginosa cell numbers. A. variabilis cell numbers reduced by 2.3log (LP) or 2.2log (MP) during the 7-d incubation period; however, after DNA damage repair, cell number began to increase. The amount of DNA damage was 6.07x10(-4) ESS/base (LP) and 4.48x10(-4) ESS/base (MP) just after UV irradiation, which became 0.23x10(-4) ESS/base and 0.40x10(-4) ESS/base, respectively, after 3d incubation. No reduction was observed in photosynthetic activity/cell. Therefore, DNA damage is the main contributor of the reduction in cell number of A. variabilis.  相似文献   
48.
Although the main features of the protein folding problem are coming into clearer focus, the microscopic viewpoint of nucleic acid folding mechanisms is only just beginning to be addressed. Experiments, theory, and simulations are pointing to complex thermodynamic and kinetic mechanisms. As is the case for proteins, molecular dynamics (MD) simulations continue to be indispensable tools for providing a molecular basis for nucleic acid folding mechanisms. In this review, we provide an overview of biomolecular folding mechanisms focusing on nucleic acids. We outline the important interactions that are likely to be the main determinants of nucleic acid folding energy landscapes. We discuss recent MD simulation studies of empirical force field and Go-type MD simulations of RNA and DNA folding mechanisms to outline recent successes and the theoretical and computational challenges that lie ahead.  相似文献   
49.
The study of nanochannel-confined DNA is important from biotechnological and biophysical points of view. We produce nanochannels in elastomer with soft lithography and proton beam writing. Issues concerning DNA confined in such quasi one-dimensional channels are discussed. We describe DNA stretching via the control of channel diameter and buffer conditions and how the extension can be interpreted with theory and computer simulation. We then discuss the conformation of nano-confined DNA crowded by neutral polymers and like-charged proteins. As an example of a protein that has an affinity to DNA, the effect of heat-stable nucleoid-structuring protein, H-NS, on the folding and compaction of DNA is reviewed. Compaction of DNA by eukaryotic protamine and unpacking of pre-compacted DNA through an increase in salt concentration are discussed. We review results obtained with a novel, cross-channel device that allows the monitoring of the dynamic, conformational response of DNA after exposure to a ligand or protein and/or a change in buffer conditions in situ. As a biotechnological application, linearization of DNA by bottlebrush coating with a polypeptide copolymer is discussed. It is demonstrated that large-scale genomic organization can be sequenced using single DNA molecules on an array of elastomeric nanochannels. Overall, our results show that the effects of ligands and proteins on the conformation, folding, and condensation of DNA are not only related to classical controlling factors, such as osmotic pressure, charge, and binding, but that the interplay with confinement in a nanospace is of paramount importance.  相似文献   
50.
心力衰竭(heart failure,HF)是心室收缩和(或)舒张功能发生障碍的一种疾病,又称心功能不全,可由多种因素引起,主要表现为心脏结构和功能的异常改变,并以交感神经、肾素-血管紧张素-醛固酮等系统激活为特征。通过临床观察,心衰患者在药物治疗期间存在极大异质性,因此在实际用药时,除了要考虑一般的环境因素,还要顾及遗传背景,尤其是序列不改变的表观遗传学。目前,有报道认为心衰患者的用药反应和DNA甲基化、组蛋白修饰、microRNA等修饰相关,但涉及该领域的研究还不多见,因此本文就近几年心衰治疗药物的表观遗传药理学进展进行一个较为全面的综述。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号